Custome	r Product Specification
■ Customer	
Product Name : Product Number :	
■ CITIZEN FINEDEVIC	E Co.,LTD. Electonic Devices Department.
Product Name :	Quad-VGA FLCD Module
Product Number :	FL1401
(Receint Column)	
Date :	/ /
*Please return one	signed original. CITIZEN FINEDEVICE CO.,LTD. Corporate
	Electronic Devices Department
	353, Yaehara, Tomi-shi, Nagano-pref. 389-0406, Japan TEL : (0268) 67-1925 FAX : (0268) 67-1913
Operating Officer :	
Verify	Person in Charge :
von y	
Verify :	

Revisi	on History		
REV	Revised date	Contents	Reason
0	Nov 21, 2014	Issue of the First Edition	
	L		

1. Scope

This specification covers the Electrical Viewfinder with a full color Ferroelectric Liquid Crystal display (FLCD) module to be delivered from CITIZEN FINEDEVICE CO., LTD.

2. Specification summary

Table1: Specification summary

Parameter	Specifications				
Display Technology	Ferroelectric Liquid Crystal (FLC) on reflective CMOS				
Display Mode	Field sequential color				
Display Format	Quad VGA : 1,280(H) x 960(V)				
Display Panel Active Area	8.127 x 6.095mm				
Display Area diagonal	10.16mm (0.40")				
Input Grayscale	256 levels per color (8bits)				
Color Depth	16.78Million unique colors (RGB888 input)				
Display Pixel Pitch	6.35um				
Display Frame Rate	60Hz/540Hz (NTSC), 50Hz/450 Hz (PAL) Typical				
Data Clock Rate	25MHz to 103MHz				
Maximum Luminance	220 cd/m ² (Typical)				
Contrast Ratio	150:1 (Typical)				
White Point	(x,y)=(0.299,0.315) (Typical)				
Digital Display Interface	RGB888 - parallel 24bit DATA				
	RGB666 - parallel 18bit DATA				
	RGB565 - parallel 16bit DATA				
	YCbCr(4:4:4)-parallel (24 data, Hd, Vd, Clock)				
	YCbCr(4:2:2)-parallel (16 data, Hd, Vd, Clock)				
Control Interface	Two-wire serial communication (I2C)				
Operating Supply Voltages	1.8 V (Core)				
	3.3 V (Core)				
	5.0 V (Analog, LED drive)				
	VIO_serial (I2C interface I/O; 1.8 to 3.3V)				
Iput Signal Level	CMOS 1.8V				
Power consumption *1	Approx. 360mW (Typical)				
Size (LxWxH)	17.6 x 14.9 x 9.7 (mm)				
Weight	Approx. 1.7g				
Operating Temperature	-10C to 70C (Panel temperature)				
Storage Temperature	-30C to 83C				

*1 Typical value at 60 Hz NTSC, flat field video pattern(data= FFh), gamma correction of 2.1, at room temperature(25C).

4. Electrical Characteristics

4.1 Degital Video Interface

4.1-1 Video Input Signal Format

The following three kinds of input formats are applicable to this product.

- 1) RGB888 Format 24bit Parallel
- 2) RGB666 Format 18bit Parallel (When using, please contact us for the pin assignment.)
- 3) RGB565 Format 16bit Parallel (When using, please contact us for the pin assignment.)
- 4) YCbCr 4:4:4 Format 24bit Parallel
- 5) YCbCr 4:2:2 Format 16bit Parallel

4.1-2 Video Input Signal Timing

All video input signals must meet the timing requirements shown in the Fig. 2, 3-1, 3-2, 3-3 & Table 2, 3.

Table 2. AC Characteristics (Video Input Signal Timing)

Parameter	Simbol	Min.	Тур.	Max.	Unit
CLOCK, rate	1/t _{CP}	25		103	MHz
CLOCK, pulse width high	t _{PWH}	40% t _{CP}	50% t _{CP}	60% t _{CP}	NA
CLOCK, pulse width low	t _{PWL}	40% t _{CP}	50% t _{CP}	60% t _{CP}	NA
DATA、VSYNC、HSYNC、 setup time	t _{SU}	1.25			ns
DATA、VSYNC、HSYNC、 hold time	t _{HLD}	1.25			ns

Parameter	arameter Symbol		Min.	Тур.	Max.	Unit
VSYNC, frequency	t _{VF}		47	60	120	Hz
VSYNC, total lines	t _{vtot} = t _{vblk} + t _{vact}	255 (*1)		1022	Lines	
VSYNC, active lines	t _{VACT}	240	960	960	Lines	
VSYNC, blanking	t _{VBLK} = t _{VFP} + t _{VW} + t _{VBP}	15 (*1)		300	Lines	
VSYNC, front porch (*1)	t _{VFP}	6 (*1)		-	Lines	
VSYNC, pulse width	t _{vw}	3		-	Lines	
VSYNC, back porch	t _{VBP}	6 (*1)		-	Lines	
HSYNC, total clocks	t _{HTOT} = t _{HBLK} + t _{HACT}	with Valid Input No Valid Input	346 (*2) 364 (*2)		-	Clocks
HSYNC, active clocks	t _{HACT}		320	1280	1280	Clocks
HSYNC, blanking	t _{HBLK} = t _{HFP} + t _{HW} + t _{HBP}	with Valid Input No Valid Input	26 (*2) 44 (*2)		-	Clocks
HSYNC, front porch	t _{HFP}	with Valid Input No Valid Input	10 (*2) 10 (*2)		-	Clocks
HSYNC, pulse width	t _{HW}	with Valid Input No Valid Input	6 6		- 511	Clocks
HSYNC, back porch	t _{HBP}	with Valid Input No Valid Input	10 (*2) 28 (*2)		- 511	Clocks
CLOCK, rate	1/t _{CP}	<u> </u>	24		103	MHz

 Table 3. Parallel Data AC Characteristcs Video Format Timing

 *1: When the number of VSYNC active lines is less than 960, the minimum porch period is to be the following value or the value in the above table, whichever is larger.
 V Back Porch >= Ceiling[(VOFFSETTOP * 10us) / (H total clocks * (1/PIXCLK freq))]

V Front Porch >= Ceiling[(VOFFSETBOT * 10us) / (H total clocks * (1/PIXCLK freq))]

*2: When the number of HSYNC active clocks is less than 1,280, the minimum porch period is to be the following value or the value in the above table, whichever is larger.
H Back Porch >= Ceiling[(300ns + (HOFFSETLEFT*10ns)) / (1/PIXCLK freq)]
H Front Porch >= Ceiling[(300ns + (HOFFSETRIGHT*10ns)) / (1/PIXCLK freq)]

VOFFSETTOP = voffset_top_pix VOFFSETBOT = voffset_bot_pix HOFFSETLEFT = hoffset_left_pix HOFFSETRIGHT = hoffset_right_pix

Please refer to [Figure 4.1-3 Cropping and Offset].

Supplementary Caution :

Even within the range(Min to Max) in the table 3, a certain combination of video format timing may limit a certain value of the video format timing above. It is advisable to consult us on the desired concrete values of video format timing.

4.1-3 Video Offset and Cropping

By setting horizontal, vertical video offset register (D1h-D5h), it enables to place the picture in the specific position on the display. The hoffset_left_pix and hoffset_right_pix registers are respectively set the display posisition from the right and left edge on a pixel unit basis.

The voffset_top_pix and voffset_bot_pix registers are resprctively set the display position from the upper and bottom edge on a two-line unit basis. All the pixels other than display area are black.

The delay (in clocks) from HSYNC (VSYNC) assertion or Holizontal (Vertical) Valid aseertion (when using valid input) can be set by hvld_delay (0Dh-0Eh) registers and vvld_delay (0Ch) register (Cropping).

The horizontal sample delay HVIdDelay (0Dh-0Eh) is always given in number of clocks,

and the vertical sample delay VVIdDelay (0Ch) is given in lines.

By offset register setting, the post-cropped picture can be adjust to place in the center of display area.

Supplementary Caution :

Other setting conditions may disable the vertical and horizental offset functions. When you use the offset register, it is advisable to consult us on the desired concrete values of video format timing.

4.1-4 Scaling

The scaling engine is based on a fractional accumulator to support arbitrary input resolutions from 320 horizontal pixels to 1280 horizontal pixels and from 240 vertical pixels to 960 vertical pixels. The horizontal and vertical scaling coefficients (HScaleStep and VScaleStep) determine the scaling ratio. HScaleStep and VScaleStep register settings are determined as follows in round-up decimal values. (requires conversion to hexadecimal format)

XScaleSten = Ceilina [512 *	Displayed Resolution
Ascurescep – Centing [512 *	Post Crop Input Resolution

Input Resolution	Output Resolution	HScaleStep	VScaleStep							
		[dec]	[dec]							
1280x960	VGA (640x480)	256	256							
1280x960	qHD (960x540)	384	288							
SVGA (800x600)	1280x960	820	820							
720p (1280x720)	1280x960	512	683							

Table 4. Scaling Setting Sample

Supplementary Caution :

Other setting conditions may disable the scaling function. When you use the scaling function, it is advisable to consult us.

4.2 Control Interface

4.2-1 AC Characteristics of Interface Signal

This product is controlled by writing data in the control registers with I2C interface. The AC characteristics of interface signal are as follows.

* For the definition of VIH and VIL, please refer to [4.5 Ratings].

Symbol fSCL	Parameter	Conditions	Standar	d-Mode	Fast-Mode	9	Unit	
			Min.	Max.	Min.	Max.	1	
	SCL clock frequency		0	100	0	400	KHz	
tHD;STA	hold time (& repeated) START condition	After this period, the first clock pulse is generated.	4	-	0.6	-	us	
tLOW	LOW period of the SCL clock		4.7	-	1.3	-	us	
tHIGH	HIGH period of the SCL clock		4	-	0.6	-	us	
tSU;STA	set-up time for a repeated START condition		4.7	-	0.6	-	us	
tHD;DAT	data hold time		5	-	5	-	ns	
tSU;DAT	data set-up time		250	-	100	-	ns	
tr	rise time of both SDA and SCL signals		-	1000	20+0.1Cb	300	ns	
tf	fall time of both SDA and SCL signals		-	300	20+0.1Cb	300	ns	
tSU;STO	set-up time for STOP condition		4	-	0.6	-	us	
tBUF	bus free time between STOP and START condition		4.7	-	1.3	-	us	
Cb	capacitive load for each bus line (depends on load and frequency)		-	400	-	400	pF	
tVD;DAT	data valid time		-	3.45	-	0.9	us	
tVD;ACK	data valid acknowledge time		-	3.45	-	0.9	us	
tSP	pulse width of spikes that must be suppressed by the input filter		n/a	n/a	0	50	ns	

4.2-2 Protcol

The device is always considered a slave in the system and requires a clock to be provided to it for all I2C interface transactions.

Start Condition : A start condition is generated through the use of pulling down the SDA line while SCL is still high.

Slave Address: 7bit -- 0111110 (binary)

- R/!W bit : The 8th bit -- If a READ is requested then the bit should be kept high, and if a WRITE is requested, the line is pulled down to a low-level signal.
- ACK bit : The 9th bit -- the acknowledgment bit from the addressed device. If the addressed device receives its address and is not busy at that time it will respond by pulling the SDA line low and therefore signaling an acknowledgment. If an acknowledgment is detected by the issuing device, then the rest of the message can be sent.

Stop Condition : If SCL is kept high and SDA changes from low to high, the interface stops.

Single Write Protocol

A START signal must be presented first. This is when the SDA line is pulled low while the SCL line is kept high. The first byte sent is always the slave address for the qHD panel's I2C interface (0111 110b) followed by the R/!W bit(Lo). An acknowledge (ACK) is returned from the receiving device after each byte sent by pulling the SDA line low for one clock. The clock is still provided by the master device, which is never the qHD panel display. The second byte sent in the write transactions is the qHD panel's 8-bit register address that will be written. After the register address is sent, the byte to be written is sent. The master keeps control of the bus and delivers the byte to be written.

_	S	Slave address	R/!W	ACK	Regi address	ACK	Data	ACK	Р	_
		SA6SA0	Lo		RA7RA0		D7D0			

Single Read Protocol

After a START, the slave address and R/!W(Lo) are sent. After an ACK is returned from the receiving device, the register address to be read is sent. Again after an ACK is returned from the receiving device, a START signal is presented again and the slave address is sent followed by the R/!W bit(Hi). After an ACK is returned, the device reads the byte data but not return an ACK. Then, the SDA line is changed from Lo to Hi with keeping the SLC Hi and the interfacing is over.

S	Slave address	R⁄!W	ACK	Regi address	ACK	SR	Slave address	R/!W	ACK	Data	ACK	Р
	SA6SA0	Lo		RA7RA0			SA6SA0	Hi		D7D0	Hi	ı

* SR : Restart

Multi-Write Protocol

Similar to single write protocol, after transactions of a START, the slave address, R/W!(Lo), an ACK, and byte data in that order, by continuously outputting data, the register address is auto-incremented for each byte write. After all data are written in the necessary addresses, the SDA line is changed from Lo to Hi with keeping the SLC Hi and the interfacing is over.

S	Slave address	R/!W	ACK	Regi address	ACK	Data	ACK	Data	ACK	Р	
	SA6SA0	Lo		RA7RA0		D7D0		D7D0			

Multi-Read Protocol

Similar to single read protocol, after transactions of a START, the slave address, R/W!(Lo), an ACK, the register address, a START(SR), the slave address, R/!W(Hi) and an ACK in that order, by continuously reading data, the register address in the device is auto-incremented and the data is output. After all data are read in the necessary addresses, not returning an ACK, the SDA line is changed from Lo to Hi with keeping the SLC Hi and the interfacing is over.

4.3 Control Sequence Requirements

The following timing/sequence requirements must be met during Start-up, Shut-down, Sleep and Wake-up to avoid damages to the display panel.

4.3-1 Start-up Sequence Requirements

The VCCX power supply must be present before the VCC power suppy is present. After the VCCX power supply is present, the VCC, VIO_serial must be present for a time period of tVCCXUP. No precedence onwhich supply, the VCC or VIO_serial, is present earlier, however, the both of power supplies must be present for a time period of tVCC2VIO.

After the VCC voltage supply is present and in specification, the display panel will load default register values from non-volatile memory to RAM for a time period of tCNFG. During this time period, the two-wire serial interface is ignored. Although the voltage supplies (VCC, VCCX, VIO_serial) can be present simultaneously, the tCNFG starts when the VCC power supply is in specification. After the tCNFG period, the two-wire serial interface will be active, which enables register setting for all commands other than a turn-on command, if necessary.

After a time period of tVIDON since the voltage supplies (VCC, VCCX, VIO_serial) is present, all the video signals (DATA, CLOCK, Vsync, Hsync and Valid) must be present. After the VCC, VCCX, VIO_serial supplies are present followed by stable presence of all the video signals (DATA, CLOCK, Vsync, Hsync and Valid), the turn-on command must be present.

The turn-on command contains the requirement that the AVCC supply must be present after a time period of tAVCCUP. After the turn-on command is complete, the display panel starts image display.

4.3-2 Shut-down Sequence

In case of shut-down of the display, the turn-off command must be present through the serial interface, before the voltage supplies are stopped. After the turn-off command is present, each power supply including the AVCC and the video signals (DATA, CLOCK, Vsync, Hsync and Valid) must be continuously supplied for a time period of tSHTDNDLY. Afterwards, the AVCC power supply is stopped first, and then the video signals (DATA, CLOCK, Vsync, Hsync and Valid) must be stopped. After a time period of tAVCCDNDLY, the voltage supplies (VCC, VCCX, VIO_serial) must be stopped. Please note that the video signals(DATA, CLOCK, Vsync, Hsync and Valid)must be stopped a time period of tVIDOFF or earlier before the voltage supplies (VCC, VCCX, VIO_serial) is stopped.

4.3-3 Sleep Sequence

To set the display to the sleep state, the sleep command below must be present through the serial interface. Afterwards, the AVCC power supply must be stopped after the tSHTDNDLY time period.

4.3-4 Wake-up Sequence

To enable the display from the sleep state, the wake-up command below must be present through the serial interface. The wake-up command contains the requirement that the AVCC supply must be present after a time period of tAVCCUP.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Start-up Sequence / Wake-up Sequence) .e	I			
Time from VCCX supply to VCC,VIO_serial supply	t _{VCCXUP}	0	-	5	ms
Time from VCC supply to VIO_serial supply	t _{VCC2VIO}	-1	-	1	ms
Time from VCC supply to when Configuration is finished.	t _{CNFG}		-	100	ms
Time from VCCX,VCC,VIO_serial supply to when video signals are	t _{VIDON}	0	-	-	us
Time after the turn-on command(#1) to when AVCC is supplied(*1).	t _{AVCCUP}	6	-	-	video field
Time from AVCC supply(*2) to when the turn-on command(#5) is started.	t _{TRNON}	0	-	-	us
Shut-down Sequence / Sleep Sequenc	e				
Time of the designated waiting period in the turn-off command.	t _{CMDWAIT}	1.5	-	-	ms
Time after the shut-down command(#2) to when the turn-off command is	t _{CMDDLY}	-	-	3	ms
Time after the turn-off command(#2) to when AVCC is stopped(*2).	t _{SHTDNDLY}	t _{CMDDLY}	-	-	ms
Time from stop of video signals to stop of VCCX,VCC,VIO_serial supplies.	t _{VIDOFF}	0	-	-	us
Time from stop of AVCC(*1) to stop of VCCX,VCC,VIO_serial supplies.	t _{AVCCDNDLY}	200 + t _{VII}	DOFF	-	us

Table 6. AC Characteristics (Control Sequence Timing)

Note 1. The definitions of *1 & *2 in the table above with regard to AVCC are as follows.

(*1) Point where the AVCC achieves 0.5V.

(*2) Point where the AVCC achieves the minimum rating in volt.

Note 2. All the definitions in the table above with regard to VCC, VCCX, VIO_serial mean the point where the voltage achieves the minimum rating.

Supplementary Precaution Statements

* To prevent the display image from being distorted or other failure, the stable video signals must be present during the time from when turn-on command is present to when turn-off command is complete.

* When each register is written with a certain value, the value reflects the operation of the display.

4.4 Pin Assignments

Table 7. Pin Assignments

No	Name	I/O	Power Supp	Function						
				24bit RGB	24bit YCbCr(4:4:4)	16bit YCbCr(4:2:2)				
1,2	GND	NA	NA	GND	•					
3,4,5	VCC(*2)	NA	NA	Panel Core Power S	Supply (+1.8V)					
6	GND	NA	NA	GND						
7	VCCX	NA	NA	Panel / EEPROM P	ower Suppy (+3.3V)					
8	N.C.	NA	NA	* Open or directly connect to VCC						
9	VIO_Serial	NA	NA	Serial Interface I/O	Power Supply (1.8V t	o 3.3V)				
10	CLOCK	I	1.8V	Video Data Clock						
11	VSYNC	Ι	1.8V	Vertical Synch Signal						
12	HSYNC	I	1.8V	Horizontal Synch Signal						
13	VALID	Ι	1.8V	Valid Signal (* If non-use : GND)						
14	GND	NA	NA	GND						
15	DATA 23	I	1.8V	Blue[7]	Cr[7]	GND				
16	DATA 22	I	1.8V	Blue[6]	Cr[6]	GND				
17	DATA 21	I	1.8V	Blue[5]	Cr[5]	GND				
18	DATA 20	I	1.8V	Blue[4]	Cr[4]	GND				
19	DATA 19	I	1.8V	Blue[3]	Cr[3]	GND				
20	DATA 18	I	1.8V	Blue[2]	Cr[2]	GND				
21	DATA 17	I	1.8V	Blue[1]	Cr[1]	GND				
22	DATA 16	I	1.8V	Blue[0]	Cr[0]	GND				
23	DATA 15	I	1.8V	Green[7]	Cb[7]	Cb[7] / Cr[7]				
24	DATA 14	I	1.8V	Green[6]	Cb[6]	Cb[6] / Cr[6]				
25	DATA 13	I	1.8V	Green[5]	Cb[5]	Cb[5] / Cr[5]				
26	DATA 12	I	1.8V	Green[4]	Cb[4]	Cb[4] / Cr[4]				
27	DATA 11	I	1.8V	Green[3]	Cb[3]	Cb[3] / Cr[3]				
28	DATA 10	I	1.8V	Green[2]	Cb[2]	Cb[2] / Cr[2]				
29	DATA 9	I	1.8V	Green[1]	Cb[1]	Cb[1] / Cr[1]				
30	DATA 8	I	1.8V	Green[0]	Cb[0]	Cb[0] / Cr[0]				
31	DATA 7	I	1.8V	Red[7]	Y[7]	Y[7]				
32	DATA 6	I	1.8V	Red[6]	Y[6]	Y[6]				
33	DATA 5	I	1.8V	Red[5]	Y[5]	Y[5]				
34	DATA 4	I	1.8V	Red[4]	Y[4]	Y[4]				
35	DATA 3	I	1.8V	Red[3]	Y[3]	Y[3]				
36	DATA 2	I	1.8V	Red[2]	Y[2]	Y[2]				
37	DATA 1	I	1.8V	Red[1]	Y[1]	Y[1]				
38	DATA 0	I	1.8V	Red[0]	Y[0]	Y[0]				
39	GND	NA	NA	GND						
40,41	AVCC	NA	NA	Panel Analog / LED Power Supply (+5V)						
42	GND	NA	NA	GND						
43	SDA	10	VIO_Serial	Serial Interface Data I/O						
44	SCL	1	VIO_Serial	Serial Interface Cloc	ck Input					
45	GND	NA	NA	GND						

*1: A mapping of video data signal for DATA0~23 can be changed.

The details are referred to in [5.Configuration Register Settings] .

*2: It is recommendable to put a 10uF or larger decoupling capacitor to the VCC on a operation circuit side.

4.5 Ratings

Table 8-1. Absolute Maximum Ratings

Parameter	Absolute N	Aaximum Ratings	Unit
	Min.	Max.	
VCCX	-0.5	3.5	V
VCC	-0.5	1.9	V
AVCC	-0.5	5.3	V
VIO_serial	-0.5	3.5	V
Voltage on any Video Input Pin	-0.4	VCCX + 0.4	V
Voltage on any Serial Input Pin	-0.4	VIO_serial+0.4	V

Table 8-2. DC Characteristics

Parameter	Symbol	Condition	Rating		Unit	
			Min.	Тур.	Max.	
Power Supply Voltage	VCCX	*1	3.1	3.3	3.5	V
	VCC	*1	1.7	1.8	1.9	
	AVCC		4.7	5.0	5.3	
	VIO_serial		1.7	3.3	3.5	
*1: While operating, VCCX ≤ (VCC >	the VCCX ai	nd VCC must fulfill the fo	llowing cond	ditions.		
Input Voltage	VIH	For all video inputs For all serial inputs	0.74*VCC 0.74*VIO_s	serial		V
	VIL	For all video inputs For all serial inputs			0.25*VCC 0.25*VIO_se	erial
Input Capacitance	IC	For all inputs 3.3Vp-p, f=5MHz		6	12	pF
Input Leakage Current	IIL	VI = VIL	-10			uA
	IIH	VI = VIH			10	
Average panel	IVCCX	VCCX=3.30V,		(in operation	n)	mA
operating supply		VCC=1.80V,		7	9	
current		AVCC=5.00V,		(in sleep)	
		VIO_serial=3.30V,		1.2	3	
	IVCC	Input Video Data=		(in operation	n)	
		1280x960(24bit RGB),		180	225	
		Display Resolution=		(in sleep)	
		1280*960,		7	10	
	I _{AVCC}	Image = White Raster		(in operation	n)	
		CLOCK =75MHz,		3	7	
		Field Frequency=60Hz,		(in sleep)	
		Gamma = 2.1,		0.2	0.6	
	I _{VIO_serial}	At room temp. and		(in operation	n)	
		under normal conditions.		0.1	0.5	
				(in sleep)	
				0.1	0.5	

5. Configuration Register Settings

Register Index : 00h

Bit	7	6	5	4	3	2	1	0
Meaning	dither_mo	ode[3:0]			Res			
Value (e.g.)	0001				0001			

dither_mode: Select dither mode

4'h1=1/2bit Spatial Dither , 1/4bit Temporal Dither

4'h2=1/2bit Temporal Dither, 1/4bit Spatial Dither

4'h3=1/2bit Spatial Dither

4'h5=Reserved (Not Available)

4'h6=Reserved (Not Available)

other= No dither / Input data rounded to 6-bit values

Res: Reserved

The above "Res" register value must be set to 0001b.

* The following "Res" resister values mest be set to the value instructed as e.g. value.

Register Index : 01h

	-		-		-			
Bit	7	6	5	4	3	2	1	0
Meaning	cspace_ sel	channel_r	nap[2:0]		data_char	nnel[1:0]	data_seq[1:0]
Value (e.g.)	0	000			00		00	

cspace_sel: Color Space Select

0 = RGB

1 = YCrCb

channel_map: select mapping of data channel to color information, dependent on the data channel setting according to the following table.

channel	24-bit RGB			24-bit YCbCr			16-bit YCbCr			
_map	[23:16]	[15:8]	[7:0]	[23:16]	[15:8]	[7:0]	[23:16]	[15:8]	[7:0]	
0h	Blue	Green	Red	Cr	Cb	Y	-	Cb/Cr	Y	
1h	Green	Red	Blue	Cb	Y	Cr	-	Y	Cb/Cr	
2h	Red	Blue	Green	Υ	Cr	Cb	Cb/Cr	Y	-	
3h	Red	Green	Blue	Υ	Cb	Cr	Y	Cb/Cr	-	
4h	Green	Blue	Red	Cb	Cr	Y	Cb/Cr	-	Y	
5h	Blue	Red	Green	Cr	Y	Cb	Y	-	Cb/Cr	

data_channel: select data interface

00=RGB/ YCbCr -24bit data interface

01=YCbCr -16bit data interface

other=Reserved. Setting is Not Available.

data_seq: data sequence of color information 00=24bit RGB, 24bit YCbCr 11=16bit YcbCr ([Y0Cr0] [Y1Cb0]) other=Reserved. Setting is Not Available.

Register Index : 02h												
Bit	7	6	5	4	3	2	1	0				
Meaning	vsync_pol	hsync_po	valid_pol	Res			sync_moc	le				
Value (e.g.)	1	1	0	000			00					

vsync_pol: Vertical sync polarity 0=Active High, 1=Active Low

hsync_pol: Horizontal sync polarity 0=Active High, 1=Active Low

valid_pol: Valid sync polarity

0=Active High, 1=Active Low

*When non-use the Valid Signal, this bit must be set to 0b.

sync_mode : Selects data sampling mode.

00=Use VALID inputs for valid video timing.

01=Use HSYNC and VSYNC inputs, valid timing specified from valid_delay registers. 10 and 11=Reserved (n/a)

Register Index : 06h

Bit	7	6	5	4	3	2	1	0
Meaning	Res					vscale_ste	ep[10:8]	
Value (e.g.)	0000 0					010		

Register Index : 07h

Bit	7	6	5	4	3	2	1	0
Meaning	vscale_st	ep[7:0]						
Value (e.g.)	0000 0000	0						

vscale_step: Vertical scaling coefficient [range: 0-1024d]

Register Index : 09h

Bit	7	6	5	4	3	2	1	0
Meaning	Res					hscale_st	ep[10:8]	
Value (e.g.)	0000 0					010		

Register Index : 0Ah

Bit	7	6	5	4	3	2	1	0
Meaning	hscale_st	ep[7:0]						
Value (e.g.)	0000 0000	0						

hscale_step: Horizontal scaling coefficient [range: 0-1024d]

Register	Register Index : 0Ch								
Bit	7	6	5	4	3	2	1	0	
Meaning	vvld_dela	ay[7:0]							
Value (e.g.)	0000 000	00							

vvld_delay: Vertical Valid Delay specified in number of lines.

sync_mode=00 : Delay from vertical valid assertion to video data sampling. The setting value will crop the video. sync_mode=01 : Delay from VSync assertion to video data sampling.

The value should nominally be set to tVW+tVBP.

The part of value(lines) beyond the tVW+tVBP will crop the video. (Refer to Fig.3-1 & Fig.4)

Register Index : 0Dh

Bit	7	6	5	4	3	2	1	0
Meaning	Res						hvld_dela	y[9:8]
Value (e.g.)	000 00							

hvld_delay: Upper bits of horizontal valid delay * Refer to register index 0Eh below.

Register Index : 0Eh

Bit	7	6	5	4	3	2	1	0
Meaning	hvld_dela	y[7:0]						
Value								
(e.g.)								

hvld_delay : Horizontal Valid Delay specified in number of clocks.

sync_mode=00 : Delay from horizontal valid assertion to video data sampling The setting value will crop the video.

sync_mode=01 : Delay from HSync assertion to video data sampling -2. The value should nominally be set to tHW+tHBP-2. The part of value(clocks) beyond the tHW+tHB-2 will crop the video. (Refer to Fig.3-2 & Fig.4)

Register Index : 0Fh-17h

Index	Value(e.g.)	7	6	5	4	3	2	1	0
0Fh	00h	color_spa	ce_bus (c	s ₁₁)					
10h	00h	color_spa	ce_bus (c	s ₁₂)					
11h	00h	color_spa	ce_bus (c	s ₁₃)					
12h	00h	color_spa	ce_bus (c	s ₂₁)					
13h	00h	color_spa	ce_bus (c	s ₂₂)					
14h	00h	color_spa	ce_bus (c	s ₂₃)					
15h	00h	color_spa	ce_bus (c	s ₃₁)					
16h	00h	color_spa	ce_bus (c	s ₃₂)					
17h	00h	color_spa	ce_bus (c	s ₃₃)					

color_space_bus: Parameters to change color space setting.

* See the Color Space Conversion Equation in Figure 9.

Regis	Register Index : 18h-1Ah									
Index	Value(e.g.)	7	6	5	4	3	2	1	0	
18h	00h	color_offs	olor_offset_bus (O ₁)							
19h	00h	color_offs	et_bu	s (O ₂)						
1Ah	00h	color_offs	et_bu	s (O ₃)						

color_offset_bus: Parameters to change color space setting.

The RGB/YCbCr values are basically converted to RGB values displayed by the values highlighted in yellow in the following equation. By setting the values highlighted in blue, the color space conversion can be available.

$$\begin{bmatrix} R_{o} \\ G_{o} \\ B_{o} \end{bmatrix} = \frac{1}{128} \begin{bmatrix} 128 + cs_{11} & 0 + cs_{12} & 0 + cs_{13} \\ 0 + cs_{21} & 128 + cs_{22} & 0 + cs_{23} \\ 0 + cs_{31} & 0 + cs_{32} & 128 + cs_{33} \end{bmatrix} \bullet \begin{bmatrix} R_{I} + O_{I} \\ G_{I} + O_{2} \\ B_{I} + O_{3} \end{bmatrix}$$
$$\begin{bmatrix} R_{o} \\ G_{o} \\ B_{o} \end{bmatrix} = \frac{1}{128} \begin{bmatrix} 128 + cs_{11} & 0 + cs_{12} & 197 + cs_{13} \\ 128 + cs_{21} & -24 & + cs_{22} & -59 & + cs_{23} \\ 128 + cs_{31} & 232 & + cs_{32} & 0 + cs_{33} \end{bmatrix} \bullet \begin{bmatrix} Y_{I} + O_{I} \\ Cb_{I} - 128 + O_{2} \\ Cr_{I} - 128 + O_{3} \end{bmatrix}$$

Fig. 9. Color Space Conversion Equation

Register Index : 50h

Bit	7	6	5	4	3	2	1	0
Meaning	Res		led_bright	ratio[5:0]				
Value (e.g.)	11		3Fh					

led_bright_ratio: LED brightness for display lighting

Brightness is devided into 64 scales and can be set. 0h= minumum brightness (1/64)

3Fh=maximum brightness (64/64)

Register	Register Index : D0h								
Bit	7	6	5	4	3	2	1	0	
Meaning	Res	28						hflip	
Value (e.g.)	0000 00						1	1	

vflip: Display vertical flip

0= disable display vertical flip mode

1= enable display vertical flip mode

hflip: Display horizontal flip

0= disable display horizontal flip mode

1= enable display horizontal flip mode

Fig. 10. Display position at vflip=1, hflip=1

Register Index : D1-D5h

Index	Value(e.g.)	7	6	5	4	3	2	1	0
D1h	00h	voffset_to	p_pix[7:0]						
D2h	00h	voffset_bo	ot_pix[7:0]						
D3h	00h	hoffset_le	ft_pix[7:0]						
D4h	00h	hoffset_rig	ght_pix[7:0]					
D5h	00h	hoffset_rio	ght_pix[9:8	hoffset_le	ft_pix[9:8]	voffset_b	ot_pix[9:8]	voffset_to	p_pix[9:8]

voffset_top_pix: Vertical offset from the top edge

The offset line from the top edge of the vertical 960 lines to the top edge of picture display (Unit : 2line)

voffset_bot_pix: Vertical offset from the bottom edge The offset line from the bottom edge of the vertical 960 lines to the bottom edge of picture display (Unit : 2line)

hoffset_left_pix: Horizontal offset from the left edge The offset pixel from the left edge of the horizontal 1280 pixels to the left edge of picture display (Unit : pixel)

hoffset_right_pix: Horizontal offset from the right edge

The offset pixel from the right edge of the horizontal 1280 pixels to the right edge of picture display (Unit : pixel)

Register Index : CEh

Bit	7	6	5	4	3	2	1	0
Meaning	Res				gamma_v	al[3:0]		
Value (e.g.)	0001				9h			

gamma_val: Gamma correction value select (1.7 ~ 2.2)

4'h5=gamma 1.7 4'h6=gamma 1.8 4'h7=gamma 1.9 4'h8=gamma 2.0 4'h9=gamma 2.1 4'hA=gamma 2.2 other=Reserved (Not Available) Note) The gamma value affects the display's luminance and contrast ratio.

6.Display Panel Specification

6.1 Optical Characteristics

Table 9. Optical Characteristics (at Room Temp.)

Item	Conditions		Min.	Тур.	Max.	Unit
Center	White Raster Image		200	220		cd/m ²
Luminance	Measure the luminance of					
	the center of the display.					
Contrast Ratio	White Raster /Black Raster Im	age	100:1	150:1		-
	Measure the luminance ratio					
	of the center of the panel.					
xy Chromaticity	White Raster Image	х	0.284	0.299	0.314	-
	Measure the chromaticity					
	of the center of the panel.	у	0.300	0.315	0.330	-

Note : Measurement conditions of the optical characteristics are as follows.

[Measurement Conditions]

Supply Voltage	: VCC=1.80V, VCCX=3.30V, VIO_serial=3.30V,		
Video Signal Input	: RGB 24bit / Resolution(1280 x 960)		
	White R=FFh, G=FFh, B=FFh		
	Black R=00h, G=00h, B=00h		
Gamma Correction LED brightness register Clock / Field Frequency Temperature Luminance & Color Met xy Chromaticity Luminance Contrast Ratio	 : 2.1 : Setting at maximum (3Fh) : Clock= 75MHz / Field Frequency=60Hz : Room Temp.(25C Typ.) : CS-100A manufactured by Konica minolta : Measured on white image : Measured on white image : Calculated by white luminance above vs 		
	black luminance which is measured on white image		
(Focal plane i	ndication) Konica Minolta Made CS-100A Close-up Lens #110		
	Measuring Diameter : φ1.3		
	(Center area of display)		
	Fig.11. Optical Measurement		
CITIZEN FIN	EDEVICE Co., Ltd. Electronic Devices Department	Page	23

/ 29

6.2 Visual Specifications

6.2-1 Display area visual defects

Conditions of inspection

At room temperature and normal humidity, inspect the display by microscope of 10 magnification focusing on the display focal plane.

Dither mode setting : 1/2bit spatial and 1/4bit temporal dither Gamma correction setting : 2.1 Color space/ Color offset register setting : 0h(All setting)

Input Signal Level 0%: (R,G,B)=(00h,00h,00h), 100%: (R,G,B)=(FFh,FFh,FFh)

Table 10. Disp	lay area	visual	defects
----------------	----------	--------	---------

Subject Area	Defect Item	Defect Size (S) [Unit : pixel]	Allowable Quantity[Unit:pcs]
		(1pixel=40.3um^2)	
Display area	Bright/White Spot	S <u><</u> 1	Any quantity is allowable.
	(Except for high	1 pixel or smaller	
	bright spots)	1 < S <u><</u> 3	3
		Larger than 1 pixel & 3 pixels or	r smaller
		3 < S <u><</u> 6	1
		Larger than 3 pixels and 6 pixel	s or smaller
		6 < S	Any quantity is NOT allowable.
		Larger than 6 pixels	
Display area	Particle	S <u><</u> 1	Any quantity is allowable.
		1 pixel or smaller	
		1 < S <u><</u> 3	3
		Larger than 1 pixel & 3 pixels or	r smaller
		3 < S <u><</u> 6	1
		Larger than 3 pixels and 6 pixels or smaller	
		6 < S	Any quantity is NOT allowable.
		Larger than 6 pixels	
Display area	Dark Spot	Any dark spot that degrades the	e quality of display is NOT allowable.
		Please refer to the following crit	eria only as a guide.
		S <u><</u> 1	Any quantity is allowable.
		1 pixel or smaller	
		1 < S <u><</u> 3	3
		Larger than 1 pixel & 3 pixel	s or smaller
		3 < S <u><</u> 6	1
		Larger than 3 pixels and 6 pixels or smaller	
		6 < S	Any quantity is NOT allowable.
		Larger than 6 pixels	
Display area	Bright Line		Any line is NOT allowable.

Note 1: Definition of display area is shown in Figure 12.

Note 2: The Dark Spot means pixels which show fixed black or gray color due to electrical dysfunction.

Note 3: Each defect must not be mutually adjacent to other by at least 2 pixels regardless of the number of defects.

6.2-2 Product appearance defects

Table 11-1. Appearance defects

Item		Specification	
Plastic parts Scratch		Should not affect the product perfomance.	
appearance	Dirt	Should be removable easily.	
	Stain	Should not affect the product perfomance.	
	Deformation	Should not affect the product perfomance.	
Other appearance		Should not affect the product perfomance.	

Table 11-2. Illuminator optical film defects

ltem	Specification
Outside surface Removable particles are accepted. Unremovable defects (for insta	
	scratch) should be in spec of the inside surface.
Inside surface	Should not degrade display image (*1).

*1: Any defects that cannot be detected with focusing on the display focul plane as described in Fig. 11 are ignorable.

The inspection conditions are the same as the conditions defined in [6.2-1Display area visual defects].

7.Serial Number

1)	Serial No X X XXXXX X a b c d
	a : Manufacturing Year Last digit of the western calendar year
	b : Manufacturing Month shown by 1 digit as below
	Jan A Jul G Feb B Aug H Mar C Sep I Apr D Oct J May E Nov K Jun F Dec L
	d : CFM control code (1digit Number or Alphabet)
2)	Labeling Position : Refer to the following figure.
Labeling	Position
	Fig. 13. Labeling Position

9. Reliability

9.1 Reliability Test

ltem	Test Condition	Spec.
High Temperature	Ta=83℃ 240hrs	Judgement is performe d after
Storage Test	* Ta : Ambient temperature of this product	an hour storage at room temp.
Low Temperature	Ta= -30℃ 240hrs	
Storage Test		Should not have any mechanical and
High Temperature Ta=60°C RH=90% 240hrs		electrical malf unction of product that
High Humidity Storage Tes	t	affects normal product operation.
High Temperature	Tp=70℃ 240hrs	
Operating Test	* Tp: Surface temperature of panel glass	
Low Temperature	Ta= - 10℃ 240hrs	
Operating Test		
High Temperature	Ta=40℃ RH=90% 240H	
High Humidity Operating Test		
Heat Shock Cycle Test	-30 ~ 80°C 30min/30min	
	10 cycles	

9.2 Electrostatic Discharge Test

Item	Test Condition	Spec.
Electrostatic discharge test	C=200PF R=0Ω V=+/-200V	Should not have any mechanical and
Mechine Model	Discharge between Power supply terminal and each signal pin 3 times for each.	electrical malfunction of product that affects normal product operation.

Note : The above tests are performed at room temperature and normal environment.

9.3 Mechanical Reliability Test

ltem	Test Condition	Spec.
Vibration Test	Vibration amplitude: 1.5mm	Should not have any mechanical and
	Frequency : 10-55Hz	electrical malfunction of product that
	Duration time : each axis 30min(X, Y, Z)	affects normal product operation.
Drop Test	Height: 20cm	
	Drop time : each axis 3 times(X, Y, Z)	
	Let products drop to a hard wooden	
	board or a concrete floor.	

Note : The above tests are performed at room temperature and normal environment.

9.4 Shipping Package Test			
Item	Test Condition	Spec.	
Vibration Test(in package)	Acceleration: 19.6m/s ² Frequency: 10-50-10Hz Duration time: each axis 30min(X, Y, Z)	Should not have any mechanical and electrical malfunction of product that affects normal product operation.	
Drop Test(in package)	Drop Height : 75cm 1corner 3 edges 6 planes Let products drop to a hard wooden board or a concrete floor.		

Note : The above tests are performed at room temperature and normal environment.

10. Special Handling Criteria

- * To prevent dust and particulate contamination, It is recommended to open the seal on these trays in a Class 10,000(or better) or equivalent room for incoming inspection or manufacturing integration.
- * Do not stack trays higher than 10, or place other heavy material on the trays to prevent damage to the sensitive optical components on the display.
- * Do not touch the surface of the polarizing film with bare fingers. When removing particulate contaminations on the film, wipe carefully the particulate contaminations off the film with alcohol-soaked soft cloth or cotton swab without any damage to the film.
- * Do not open or close the connector cover without inserting FPC into the slot. It may break the connector cover.
- * Do not use air blow to remove particulate contaminations. In case of strong air blow cleaning very close to the product, particles may intrude into the product.
- * During either integration or storage, do not allow any moisture or solvent to contact the polarizing film and do not allow condensation to form on the product.
- * When handling the product, please pay attention to keep the product static-free and non-chargeable, especially, do not touch the conductive work surface of the product.

11. Environmental Standards

* The product is compliant with RoHS Directive[EUROPEAN DIRECTIVES 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electoronic equipment].

12.Others

When the issue that is not described in this document arises, the both parties will mutually solve it.